

ISSN ONLINE 2348-2095 Research Article

THE *M*–*N*-HOMOMORPHISM, *M*–*N*-ANTI HOMOMORPHISM OVER *M*–*N*-SOFT FUZZY SUBGROUPS

G.Gomathi Eswari¹ and R.Palanikumar²

^{1 & 2} Asst.Professor, Department of Mathematics, Srimad Andavan Arts and Science College (Autonomous), Trichy–5

Abstract

In this paper soft fuzzy set and soft fuzzy subgroup and the concept of M-N- fuzzy subgroups and some elementary properties are discussed. We also try to use soft fuzzy subgroup in M-N –fuzzy subgroup. We use soft fuzzy subgroup as a basic tool to find the M-N-soft fuzzy subgroup, M-N-normal soft fuzzy subgroup We introduce M-N-homomorphism and M-N-anti homomorphism over M-N-soft-fuzzy subgroup, also extend some results on this subject.

Key Words

Fuzzy subset, M–N-fuzzy subgroup, M–N- normal fuzzy subgroup, M–N-homomorphism, M–N-anti homomorphism, soft fuzzy subset, M–N-soft fuzzy subgroup, M–N-normal soft fuzzy subgroup.

AMS subject classification: 20N25, 22F05

Introduction

L.A.zedeh [1] introduce the concepts of fuzzy sets and fuzzy operations. Later Solairaju and Nagarajan [2] introduced the notation of Q fuzzy groups. Also A.Sheik & K.Jeyaraman [3] define the anti homomorphism in groups and normal fuzzy subgroups. Then M.O.Massa'deh [4] discuss the M-N-fuzzy subgroups.

In this paper we have to develop all M-N- fuzzy subgroups and M-N- Homomorphism & M-N- Anti homomorphism over M-N- fuzzy subgroups and also discussed the M-N- soft fuzzy subgroups.

Preliminaries

Definition 2.1: Fuzzy set

Let X be a non-empty set. A fuzzy set μ on X is a mapping μ : X \otimes [0, 1] and is denoted by $\mu = \{(x, \mu(x))/x$ **b** X \}.

Definition 2.2: Level fuzzy set

Let μ be a fuzzy subset of a set X. For t **b** [0, 1], $\mu_1 = \{(x \mathbf{b} X / \mu(x) \ge t)\}$ is called level fuzzy subset of μ .

Definition 2.3: Image and Pre-image of a fuzzy set

Let X and Y be two sets. Let $f: X \otimes Y$ be a function. If μ is a fuzzy set on X, then the image

of μ under f is a fuzzy set on Y and is defined by $\{f(\mu)\}(y) = \sup_{x \in f^{-1}(y)} \mu(x), \forall y \in Y$. Let λ be a

fuzzy set on Y. The pre-image of S is a fuzzy set on X and is defined by $\{f^{-1}(\lambda)\}(x) = \lambda(f(x))$.

Definition 2.4: Soft set

Let U be an initial universe, P(U) be the power set of U, E be the set of all parameters and A E. A soft set (f_A, E) on the universe U is defined by the set of ordered pair, $(f_A, E) = \{(e, f_A(e)); e \in E, f_A(e) \in P(U)\}$ where $f_A: E \otimes P(U)$ such that, $f_A(e) = \phi$ if $e \notin A$.

Example:

Let U= { s_1 , s_2 , s_3 , s_4 } be a set of four shirts and E = { $white(e_1)$, $red(e_2)$, $blue(e_3)$ } be a set of parameters. If A= { e_1 , e_2 } E. Let $f_A(e_1) = {s_1$, s_2 , s_3 , s_4 }, $f_A(e_2) = {s_1$, s_2 , s_3 } and $f_A(e_3) = \phi$ since, $e_3 \notin A$. Then we write the soft set over U as follows. $(f_A, E) = \{(e_1, \{s_1, s_2, s_3, s_4\}), (e_2, \{s_1, s_2, s_3\})\}$. We may represent the soft set in the following form,

U	e_1	e_2	e_4
S_1	1	1	0
<i>s</i> ₂	1	1	0
<i>S</i> ₃	1	1	0
S_4	1	0	0

Definition 2.5:

For two soft sets (F, A) and (G, B) over a common universe X, we say that (F, A) is a soft subset of (G, B) and we write $(F, A) \subseteq (G, B)$.

If, $(i) A \subseteq B$

(*ii*) For each $a \in A$, $F(a) \subseteq G(a)$

Definition 2.6:

Two soft sets (F, A) and (G, B) over a common universe U are said to be equal if $(F, A) \subseteq (G, B)$ and $(G, B) \subseteq (F, A)$.

Definition 2.7:

Union of two soft sets (F, A) and (G, B) over a common universe X is the soft set (H, C), where $C = A \cup B$ and

$$H(c) = \begin{cases} F(c) & \text{if } c \in A - B \\ G(c) & \text{if } c \in B - A \quad \forall c \in C \\ F(c) \cup G(c) & \text{if } c \in A \cap B \end{cases}$$

We write,

 $(F,A)\cup(G,B)=(H,C)$.

Definition 2.8:

Intersection of two soft sets (F, A) and (G, B) over a common universe X is the soft set

(H,C) where $C = A \cap B$ and $H(c) = F(c) \cap G(c) \quad \forall c \in C$

We write,

$$(F, A) \cap (G, B) = (H, C)$$

i.e. $F : A \to P(X)$
 $G : B \to P(X)$
 $H : C \to P(X)$
 $H : A \cap B \to P(X)$

Definition 2.9: (AND)

If (F, A) and (G, B) are two soft sets over a common universe U, then "(F, A) AND (G, B)" denoted by $(F, A)\tilde{\wedge}(G, B)$ is defined by $(F, A)\tilde{\wedge}(G, B) = (H, A \times B)$, where $H(x, y) = F(x) \cap G(y) \ \forall (x, y) \in A \times B$

Definition 2.10: (OR)

If (F, A) and (G, B) are two soft sets over a common universe U, then "(F, A) OR (G, B)

" denoted by $(F, A)\tilde{\vee}(G, B)$ is defined by $(F, A)\tilde{\vee}(G, B) = (H, A \times B)$, where $H(x, y) = F(x) \cup G(y) \quad \forall (x, y) \in A \times B$

Definition 2.11: AND Soft set

Let $(F_i, A_i)_{i \in I}$ be a non-empty family of soft sets over a common universe U. The AND-soft set $\tilde{\wedge}_{i \in I}(F_i, A_i)$ of these soft sets is defined to be the soft set (H, B) such that $B = \prod_{i \in I} A_i$ and

 $H(x) = \bigcap_{i \in I} F_i(x_i)$ for all $x = (x_i)_{i \in I} \in B$.

Definition 2.12: OR Soft set

Let $(F_i, A_i)_{i \in I}$ be a non-empty family of soft sets over a common universe set U. The ORsoft set $\tilde{\vee}_{i \in I} (F_i, A_i)$ of these soft sets is defined to be the soft set (H, C) such that $C = \prod_{i \in I} A_i$ and $H(x) = \bigcup_{i \in I} F_i(x_i)$ for all $x = (x_i)_{i \in I} \in C$.

Note: If $A_i = A$ and $F_i = F \quad \forall i \in I$, then $\tilde{\wedge}_{i \in I} (F_i, A_i) = \tilde{\wedge}_{i \in I} (F, A)$.

In this case, $\prod_{i \in I} A_i = \prod_{i \in I} A$.

Definition 2.13: Fuzzy group

Let G be a group. A fuzzy subset μ of G is said to be a fuzzy subgroup of G if

(i)
$$\mu(xy) \ge \min \{\mu(x), \mu(y)\}$$

(ii) $\mu(x^{-1}) \ge \mu(x) \quad \forall x, y \in G$.

Definition 2.14: Fuzzy level subgroup

Let μ be a fuzzy subgroup of a group G. The subgroup μ_t of G, for $t \in [0,1]$ such that $\mu(e) \ge t$ is called a level subgroup of μ .

Definition 2.15: Normal fuzzy subgroup

A fuzzy subgroup μ of a group G is called normal fuzzy subgroup. If $\mu(x^{-1}yx) \ge \mu(y) \quad \forall x, y \in G$.

Definition 2.16: Soft group

Let X be a group and (F, A) be a soft set over X. Then (F, A) is said to be a soft group over X iff $F(a) < X \forall a \in X$.

Definition 2.17: Fuzzy soft group

Let X be a group and (μ, A) be a fuzzy soft set over X. Then (μ, A) is said to be a fuzzy soft group over X iff for each $a \in A$ & $x, y \in X$,

- (*i*) $\mu_a(x, y) \ge \min \{\mu_a(x), \mu_a(y)\}$
- $(ii) \quad \mu_a(x^{-1}) \ge \mu_a(x)$

That is, for each $a \in A$, μ_a is a fuzzy subgroup in Rosenfield's sense.

• •

3.
$$M - N -$$
 Fuzzy and Normal Fuzzy Subgroups

Definition 3.1: M - N - Fuzzy subgroups

Let G be an M - N - group and μ be a fuzzy subgroup of G. If,

1.
$$\mu(mx) \ge \mu(x)$$

$$2 \cdot \mu(xn) \ge \mu(x)$$

Hold for any $x \in G$, $m \in M \& n \in N$, then μ is said to be an M - N - fuzzy subgroup of G.

Definition 3.2:

Let G be an M - N - group. μ is said to be an M - N - normal fuzzy subgroup of G if μ is not only an M - N – fuzzy subgroup of G, but also normal fuzzy subgroup of G.

Proposition 3.3:

Let G be an M - N group. μ, λ both be M - N fuzzy subgroups of G, then the intersection of μ, λ is an M - N – fuzzy subgroup of G.

.Corollary 3.4:

The intersection of two M - N - normal fuzzy subgroups μ, λ is an M - N - normal fuzzy subgroup of G.

Corollary 3.5:

If μ is an M - N - fuzzy subgroup of an M - N - group G, then the following statement hold for all $x, y \in G$, $m \in M$ and $n \in N$.

1.
$$\mu((m(xy)n) \ge \min{\{\mu(x), \mu(y)\}}$$

2. $\mu((mx^{-1})n) \ge \mu(x)$

Theorem 3.6:

Let G be an M - N - group, λ be a fuzzy set of G. Then λ is M - N - fuzzy subgroup of G iff for any $t \in [0,1]$, λ_t is an M - N - subgroup of G, when $\lambda_t \neq \phi$.

Corollary 3.7:

Let μ be a fuzzy set of the M - N group of G, then μ is an M - N normal fuzzy subgroup iff μ_t is an M - N - normal subgroup of G for any $t \in [0,1], \ \mu_t \neq \phi$.

Definition 3.8: Let μ be an M - N - fuzzy subgroup of an M - N - group G and let $H = \{x \in G, m \in M, n \in N; \mu(mxn) = \mu(e)\}$. Then μ is an M - N - fuzzy abelian subgroup of G.

4. M - N - Homomorphism and M - N - Anti-Homomorphism

Definition 4.1: Let G_1 and G_2 both be M - N - groups and Ψ be a homomorphism from G_1 onto G_2 . If $\psi(mx) = m\psi(x)$ and $\psi(xn) = \psi(x)n$ for all $x \in G_1, m \in M$ and $n \in N$. Then Ψ is called an M - N – homomorphism.

Proposition 4.2: Let G_1 and G_2 both be M - N - groups and Ψ be a homomorphism from G_1 onto G_2 . If μ is an M - N - fuzzy subgroup of G_2 , then $\psi^{-1}(\mu)$ is an M - N - fuzzy subgroup of G_1 . **Corollary 4.3:** Let G_1 and G_2 both be M - N - groups and Ψ be a homomorphism from G_1 onto G_2 . If μ is an M - N permet form ψ and W be a homomorphism from G_1 onto G_2 .

 G_2 . If μ is an M - N - normal fuzzy subgroup of G_2 , then $\psi^{-1}(\mu)$ is an M - N - normal fuzzy subgroup of G_1 .

Proposition 4.4: Let G_1 and G_2 both be M - N – groups and Ψ be a homomorphism from G_1 onto G_2 . If μ is an M - N – fuzzy subgroup of G_1 , then $\Psi(\mu)$ is an M - N – fuzzy subgroup of G_2 .

Corollary 4.5: Let G_1 and G_2 both be M - N - groups and Ψ be a homomorphism from G_1 onto G_2 . If μ is an M - N - normal fuzzy subgroup of G_1 , then $\psi(\mu)$ is an M - N - normal fuzzy subgroup of G_2 .

Definition 4.6: Let G_1 and G_2 both be M - N - groups, then the function Ψ from G_1 onto G_2 is said to be M - N - anti homomorphism. If $\Psi(m(xy)) = m\Psi(y)\Psi(x)$ and $\Psi((xy)n) = \Psi(y)\Psi(x)n$ for all $x \in G_1$, $m \in M$ and $n \in N$.

Definition 4.7: Let μ be an M - N - fuzzy characteristic subgroup of M - N - group G if $\mu(\psi(m(xy)n) = \mu(m(xy)n)$.

Definition 4.8: Soft fuzzy M - N - subgroup (New)

Let G be an M - N - group and (μ, A) be a soft fuzzy subgroup of G. If, 1. $\mu_a \{m(xy)n\} \ge \min \{\mu_a(x), \mu_a(y)\}$ 2. $\mu_a \{(mx^{-1})n\} \ge \mu_a(x)$

Hold for any $x, y \in G$, $m \in M$ and $n \in N$, then (μ, A) is said to be an M - N – soft fuzzy subgroup of G. Here $\mu_a : A \to P(G)$.

5. M - N – Soft Fuzzy and Normal Soft Fuzzy Subgroups

Definition 5.1:

Let G be an M - N – group and (μ, A) be a soft fuzzy subgroup of G. If

- 1. $\mu_a(mx) \ge \mu_a(x)$
- 2. $\mu_a(xn) \ge \mu_a(x)$

Hold for any $x \in G$, $m \in M$ & $n \in N$, then (μ, A) is said to be an M - N - soft fuzzy subgroup of G.

Definition 5.2: Let G be an $M - N - \text{group.}(\mu, A)$ is said to be an M - N - normal soft fuzzy subgroup of G if (μ, A) is not only an M - N - soft fuzzy subgroup of G, but also normal soft fuzzy subgroup of G.

Proposition 5.3: Let G be an M - N - group. $(\mu, A), (\lambda, B)$ both be M - N - soft fuzzy subgroups of G, then the intersection of $(\mu, A), (\lambda, B)$ is an M - N - soft fuzzy subgroup of G.

Corollary 5.4: The intersection of to M - N - normal soft fuzzy subgroups $(\mu, A), (\lambda, B)$ is an M - N - normal soft fuzzy subgroup of G.

Corollary 5.5: If (μ, A) is an M - N - soft fuzzy subgroup of an M - N - group G, then the following statement hold for all $x, y \in G$, $m \in M$ and $n \in N$.

1.
$$\mu_a\left(\left(m(xy)n\right) \ge \min\left\{\mu_a(x), \mu_a(y)\right\}\right)$$

2. $\mu_a\left(\left(mx^{-1}n\right) \ge \mu_a(x)\right)$

Theorem 5.6:

Let G be an M - N - group, (λ, A) be a soft fuzzy set of G. Then (λ, A) is M - N - softfuzzy subgroup of G iff for any $t \in [0,1]$, (λ_t, A) is an M - N - soft subgroup of G, when

 $(\lambda_t, A) \neq \phi$

Corollary 5.7:

Let (μ, A) be a soft fuzzy set of the M - N - group of G, then (μ, A) is an M - N - normal soft

```
International Journal of Research Instinct
(www.injriandavancollege.co.in)
```

fuzzy subgroup iff (μ_t, A) is an M - N – normal soft subgroup of G for any $t \in [0,1]$, $(\mu_t, A) \neq \phi$. **Definition 5.8:**

Let (μ, A) be an M - N - soft fuzzy subgroup of an M - N - group G and let $H = \{x \in G, m \in M, n \in N; \mu_a(mxn) = \mu_a(e)\}$. Then (μ, A) is an M - N - soft fuzzy abelian subgroup of G.

6. M - N - Homomorphism and M - N -Anti- Homomorphism of M - N -soft fuzzy subgroups

Proposition 6.1:

Let G_1 and G_2 both be M - N - groups and f be a homomorphism from G_1 onto G_2 . If (μ, A) is an M - N - soft fuzzy subgroup of G_2 , then $f^{-1}(\mu)$ is an M - N - soft fuzzy subgroup of G_1 .

Corollary 6.2:

Let G_1 and G_2 both be M - N - groups and f be a homomorphism from G_1 onto G_2 . If (μ, A) is an $M - N - \text{normal soft fuzzy subgroup of } G_2$, then $f^{-1}(\mu)$ is an M - N - normal soft fuzzy subgroup of G_1 .

Proposition 6.3:

Let G_1 and G_2 both be M - N - groups and f be a homomorphism from G_1 onto G_2 . If (μ, A) is an M - N - soft fuzzy subgroup of G_1 , then $f(\mu)$ is an M - N - soft fuzzy subgroup of G_2 .

Corollary 6.4:

Let G_1 and G_2 both be M - N - groups and f be a homomorphism from G_1 onto G_2 . If (μ, A) is an $M - N - \text{normal soft fuzzy subgroup of } G_1$, then $f(\mu)$ is an M - N - normal soft fuzzy subgroup of G_2 .

Definition 6.5:

Let G_1 and G_2 be M - N - groups. The function f from G_1 onto G_2 is said to be M - N anti homomorphism, if f(m(xy)) = mf(y)f(x) and f((xy)n) = f(y)f(x)n for all $x \in G_1$, $m \in M$

International Journal of Research Instinct (www.injriandavancollege.co.in)

and $n \in N$.

Definition 6.6:

 (μ, A) be an M - N - soft fuzzy characteristic subgroup of M - N - group G if $\mu_a(f(m(xy)n) = \mu_a(m(xy)n).$

7. M - N – Homomorphism and M - N – Anti homomorphism over M - N – Soft Fuzzy Subgroups

Theorem 7.1:

Let $f: G_1 \to G_2$ be an M - N - anti homomorphism. If (μ, A) is an M - N - soft fuzzy subgroup of G_2 , then $f^{-1}(\mu)$ is an M - N - soft fuzzy subgroup of G_1 .

Proof: Let $x, y \in G_1, m \in M, n \in N$

$$f^{-1}(\mu_{a})(m(xy)) = \mu_{a}(f(m(xy))) = \mu_{a}(m(f(y)(x)))$$

$$\geq \min \{\mu_{a}(m(f(y)), \mu_{a}(f(x)))\}$$

$$\geq \min \{mf^{-1}(\mu_{a}(y)), f^{-1}(\mu_{a}(x))\}$$

And

$$f^{-1}(\mu_{a})((xy)n) = \mu_{a}(f((xy)n) = \mu_{a}((f(y)f(x)n))$$
$$\geq \min\{\mu_{a}((f(y)), \mu_{a}(f(x)n)\}\}$$
$$\geq \min\{f^{-1}(\mu_{a}(y)), f^{-1}(\mu_{a}(x)n)\}$$

Also $f^{-1}(\mu_a(mx^{-1})n) = \mu_a(mf((x^{-1})n)) = \mu_a(mf((x)n)) = \mu_a(f(x)) = f^{-1}(\mu_a(x))$.

Therefore $f^{-1}(\mu_a)$ is M - N – soft fuzzy subgroup of G_1 .

Corollary 7.2:

Let $f: G_1 \to G_2$ be an M - N – anti homomorphism. If (μ, A) is an M - N – normal soft fuzzy subgroup of G_2 , then $f^{-1}(\mu, A)$ is an M - N – normal soft fuzzy subgroup of G_1 .

Proof: Let $x, y \in G_1$, $m \in M$, $n \in N$ by theorem 7.1 $f^{-1}(\mu_a)$ is an M - N – soft fuzzy subgroup of

$$G_{1.} f^{-1}(\mu_a)((xy)) = \mu_a(f(xy)) = \mu_a((f(y)f(x))) = \mu_a(f(yx)) = f^{-1}(\mu_a)((yx)).$$

Which is implies that $f^{-1}(\mu_a)$ is an M - N – normal soft fuzzy subgroup of G_1 .

Theorem 7.3:

An M - N – soft fuzzy characteristic subgroup on M - N – soft fuzzy subgroup is an M - N – normal soft fuzzy subgroup.

Proof:

Let f be an M - N - anti homomorphism of G which is implies that f(xy) = f(y)f(x).

$$f(m(xy)) = mf(y)f(x)$$
$$f((xy)n) = f(y)f(x)n$$

Since $\mu_a(m(xy)n) = \mu_a(f(m(xy)n))$ and

$$\mu_a(m(xy)n) = \mu_a(mf(y)f(x)n) = \mu_a(f(m(yx)n)).$$

Hence μ_a is an M - N – normal soft fuzzy subgroup of G.

Theorem 7.4:

An M - N – anti homomorphism pre image of an M - N – soft fuzzy abelian subgroup is an M - N – soft fuzzy abelian subgroup. Proof:

Let (λ, A) be an M - N - soft subgroup of G_1 , we need to prove (λ, A) is an M - N - soft fuzzy abelian subgroup of G_1 suppose that (μ, A) is an M - N - soft fuzzy abelian subgroup of G_2 . Then $H_2 = \{y \in G_2, m \in M, n \in N; \mu_a(myn) = \mu_a(e_2)\}$ is an M - N - soft fuzzy abelian subgroup of G_2 , where e_2 is the identity of G_2 . Consider the set $H_1 = \{x \in G_1, m \in M, n \in N; \lambda_a(mxn) = \lambda_a(e_1)\}$ where e_1 is the identity of G_1 . Let $m(xy)n \in H_1 \subseteq G_1$, then $\lambda_a(mxyn) = \lambda_a(e_1)$

$$\mu_a \left(f(m(xy)n) = \mu_a \left(f(e_1) \right) \right)$$
$$\mu_a \left(f(m(xy)n) = \mu_a(e_2) \right)$$
$$\mu_a \left(m(f(y)f(x)n) = \mu_a(e_2) \right)$$

 $m(f(y)f(x)n) \in H_2$ and H_2 is abelian, thus

$$\mu_a \left(m(f(y)f(x))n \right) = \mu_a \left(m(f(x)f(y))n \right) = \mu_a \left(mf(xy)n \right) = \mu_a \left(mf(yx)n \right)$$
$$\lambda_a \left(m(xy)n \right) = \lambda_a \left(m(yx)n \right)$$
$$\lambda_a (e_1) = \lambda_a \left(m(yx)n \right)$$

Therefore H_1 is an M - N - abelian subgroup and (λ, A) is an M - N - soft fuzzy abelian subgroup of G_1 .

Theorem 7.5:

An M - N – anti homomorphism image of an M - N – soft fuzzy abelian subgroup is an M - N – soft fuzzy abelian subgroup. Proof:

Let (λ, A) be an M - N - soft subgroup of G_2 , we need to prove (λ, A) is an M - N - soft fuzzy abelian subgroup of G_2 , suppose that f is an M - N - anti homomorphism from G_1 into G_2 since is an M - N - soft fuzzy abelian subgroup of G_1 . Then $H_1 = \{x \in G_1, m \in M, n \in N; \lambda_a(mxn) = \lambda_a(e_1)\}$ is an M - N - abelian subgroup of G_1 where e_1 is the identity of G_1 . Let μ_a be an M - N - soft fuzzy abelian subgroup of G_2 and $H_2 = \{y \in G_2, m \in M, n \in N; \mu_a(myn) = \mu_a(e_2)\}$ is an M - N - soft fuzzy abelian subgroup of G_2 , e_2 is the identity of G_2 . If $m(xy)n \in H_2 \subseteq G_2, \mu_a(mxyn) = \mu_a(e_2)$

$$\sup_{z \in f^{-1}(m(xy)n)} \lambda_a(z) = \sup_{z \in f^{-1}(e_2)} \lambda_a(z)$$
$$\lambda_a(m(xy)n) = \lambda_a(e_1)$$
 then

 $m(xy)n \in H_1$ and H_1 is an M - N - abelian subgroup, thus $\lambda_a(m(xy)n) = \lambda_a(m(yx)n)$

$$\sup_{z \in f^{-1}(m(xy)n)} \lambda_a(z) = \sup_{z \in f^{-1}(m(yx)n)} \lambda_a(z)$$
$$\mu_a(m(xy)n) = \lambda_a(m(yx)n)$$
$$\mu_a(e_2) = \mu_a(m(yx)n)$$

Therefore H_2 is an M - N - abelian subgroup of G_2 and μ_a is an M - N - soft fuzzy abelian subgroup of G_2 .

Theorem 7.6:

Let f be an M - N - homomorphism from an M - N - group G_1 onto an M - N - group G_2 . If (λ, A) is an M - N - soft fuzzy subgroup of G_1 and (λ, A) is an f - invariant, then $f(\lambda, A)$ is an M - N - soft fuzzy subgroup of G_2 . Proof:

Let $t \in Imf(\lambda_a)$, then for some $y \in G_2$.

International Journal of Research Instinct (www.injriandavancollege.co.in)

$$(f(\lambda_a))(y) = \sup_{x \in f^{-1}} \lambda_a(x) = t$$
,

Where $t \leq \lambda_a(e)$.

We know $(\lambda_a)_t$ is an M - N - soft subgroup of G_1 , if t = 1 then $(f(\lambda_a)_t) = G_2$. If 0 < t < 1, then $(f(\lambda_a)_t) = f((\lambda_a)_t)$, since $z \in (f(\lambda_a)_t) \Leftrightarrow f(\lambda_a)(z) \ge t \Leftrightarrow \sup_{x \in f^{-1}(z)} \lambda_a(x) \ge t$

If there exist $x \in G_1$ such that f(x) = z and $\lambda_a(x) \ge t$ iff $z \in (f(\lambda_a)_t)$.

Hence $(f(\lambda_a)_t) = f((\lambda_a)_t)$ and is an M - N - homomorphism, $(f(\lambda_a))$ is an M - N - soft subgroup of G_2 therefore $(f(\lambda_a)_t)$ is an M - N - soft subgroup of G_2 and $f(\lambda_a)$ is an M - N soft fuzzy subgroup of G_2 .

Theorem 7.7:

Let f be an M - N – anti homomorphism from an M - N – group G_1 onto an M - N – group G_2 . If (λ, A) is an M - N – soft fuzzy subgroup of G_1 and (λ, A) is an f – invariant, then $f(\lambda_a)$ is an M - N – soft fuzzy subgroup of G_2 .

Proof:

Let $t \in Imf(\lambda_a)$, then for some $y \in G_2$.

$$(f(\lambda_a))(y) = \sup_{x \in f^{-1}} \lambda_a(x) = t$$

Where $t \leq \lambda_a(e)$.

We know $(\lambda_a)_t$ is an M - N - soft subgroup of G_1 , if t = 1 then $(f(\lambda_a)_t) = G_2$. If 0 < t < 1,

then $(f(\lambda_a)_t) = f((\lambda_a)_t)$, since $z \in (f(\lambda_a)_t) \Leftrightarrow f(\lambda_a)(z) \ge t \Leftrightarrow \sup_{x \in f^{-1}(z)} \lambda_a(x) \ge t$

If there exist $x \in G_1$ such that f(x) = z and $\lambda_a(x) \ge t$ iff $z \in (f(\lambda_a))$.

Hence $(f(\lambda_a)_t) = f(\lambda_a)_t$ and is an M - N - anti homomorphism, $(f(\lambda_a))$ is an M - N - soft subgroup of G_2 therefore $(f(\lambda_a)_t)$ is an M - N - soft subgroup of G_2 and $f(\lambda_a)$ is an M - N soft fuzzy subgroup of G_2 .

Conclusion

In this paper we have discussed M-N- Homomorphism soft fuzzy set group and M-N- Anti homomorphism soft fuzzy subgroup. Interestingly it has been observed that fuzzy concept adds an

M-N- fuzzy subgroups from defined fuzzy normal subgroups. The purpose of this paper we introduce the theory of M-N- soft fuzzy subgroups.

References

 [1] Mourad Oqla Massa'deh, The M–N–Homomorphism and M–N–Anti homomorphism over M– N–Fuzzy Subgroups, International Journal of Pure and Applied Mathematics. Volume 78, issue No. 7, 1019-1027, 2012,

[2] Rosenfeld Azriel, Fuzzy groups, J.Math. Anal. Appl, 35 (1979), 512-517.

[3] A. Solairaju, R. Nagarajan, A new structure and constructions of Q-fuzzy group, *Advances in Fuzzy Mathematics*, **4** 23-29, (2009),

[4] A.Sheik Abdullah, K. Jeyaraman, Anti-homomorphism in fuzzy subgroup, *International Journal of computer Applications*, **12**, 24-27, (2010).

[5] Rao K. Chandrasekhara, V. Swaminathan, Anti-homomorphism in near rings, *J. of Inst. of Math and Computer Science*, Math. Ser., **2**,83-88,(2008).

[6] Rao K. Chandrasekhara, G. Gopalakrishnamoorthy, Anti-homomorphism in groups, Inst. of Math and Computer Science, Math. Ser., 9, 45-55,2006

[7] L.A. Zadeh, Fuzzy sets, Information and control, 8, 338-353,1965

[8] P. Pandiammal, R. Natarajan, N. Palaniappan, Anti *L*-fuzzy normal *M*-subgroups, *International Journal of computer Applications*, **11**, 12-16,2010.

[9] R. Biswas, Fuzzy subgroups and anti fuzzy subgroups, *Fuzzy sets and Systems*, **35**, 121-124,1990.

[10] R. Muthuraj, M. Rajinikannan, M.S. Muthurauan, The M-homomorphism and M-anti homomorphism of an M-fuzzy subgroups and its level M-subgroups, *International Journal of Computer Applications*, **2**, 66-70,2010.