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In this paper soft fuzzy set and soft fuzzy subgroup and the concept of M-N. fuzzy
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Introduction

L.A.zedeh [1] introduce the concepts of fuzzy sets and fuzzy operations. Later Solairaju and
Nagarajan [2] introduced the notation of Q fuzzy groups. Also A.Sheik & K.Jeyaraman [3] define
the anti homomorphism in groups and normal fuzzy subgroups. Then M.O.Massa’deh [4] discuss
the M-N-fuzzy subgroups.

In this paper we have to develop all M-N- fuzzy subgroups and M-N- Homomorphism & M-
N- Anti homomorphism over M-N- fuzzy subgroups and also discussed the M-N- soft fuzzy
subgroups.

Preliminaries
Definition 2.1: Fuzzy set

Let X be a non-empty set. A fuzzy set p on X is a mapping p: X&5[0, 1] and is denoted by p

={(x, u(x))/x B X}.
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Definition 2.2: Level fuzzy set

Let p be a fuzzy subset of a set X. Fort ¥ [0, 1], w={(x®X/u(x) >t} is called level fuzzy
subset of L.
Definition 2.3: Image and Pre-image of a fuzzy set

Let X and Y be two sets. Let /: XY be a function. If p is a fuzzy set on X, then the image

of p under f'is a fuzzy set on ¥ and is defined by{f('“)}(y) = sup p(x), VYEY [et)bea

xef ™ (y)

fuzzy set on Y. The pre-image of S is a fuzzy set on X and is defined by {ffl (i)} (x)=2(f(x)).

Definition 2.4: Soft set
Let U be an initial universe, P(U) be the power set of U, E be the set of all parameters and A
A E. A soft set (f, E) on the universe U is defined by the set of ordered pair,

(f-E)={(e.f\(e)); e E, f,(e) € PU)} where fi:E&P(U) such that, f,(e)=¢ if eg 4.
Example:

Let U= {s,, 55, 53 54} be a set of four shirts and E = {white(e,), red(e;), blue(es)} be a set of
parameters. If A= {e;, e;} B E. Let fu(e))= {51, 52, 83, S4}, fa(ez)= {s1, 52, s3} and fi(e;)= ¢ since,

e, € A. Then we write the soft set over U as follows. (/. E)= {(el,{Sl,sz,s3,s4}),(ez,{sl,sz,s3})} .

We may represent the soft set in the following form,

U | ¢ |e e,
s |1 1 0
s, |1 1 0
s; |1 1 0
s, |1 0 0

Definition 2.5:

For two soft sets (F,4) and (G,B) over a common universe X , we say that (F,4) is a

soft subset of (G, B) and we write (F,A)c(G,B).
If, (i) AcB
(if) Foreach ac 4, F(a) = G(a)

Definition 2.6:

Two soft sets (F,4) and (G,B) over a common universe U are said to be equal if

(F,A)c(G,B) and (G,B)c(F,A).
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Definition 2.7:
Union of two soft sets (F,4) and (G,B) over a common universe X is the soft set (H,C),

where C=AUB and

F(c) if ceA-B
H(c)= G(c) if ceB-4 VceC
F(c)uG(c) if ceAnB

We write,
(F.4)U(G,B)=(H.C).
Definition 2.8:
Intersection of two soft sets (F,4) and (G,B) over a common universe X is the soft set
(H,C) where C=ANB and H(c)=F(c)nG(c) YV ceC
We write,
(F.4)~(G,B)=(H.C)
ie. F:4—PX)
G:B— P(X)
H:C — P(X)
H:ANnB— P(X)
Definition 2.9: (AND)
If (F,A4) and (G,B) are two soft sets over a common universe U, then “(F,4) AND

(G,B)” denoted by (F,A)A(G,B) is defined by (F,4)A(G,B)=(H,AxB), where

H(x,y)=F(x)NG(y) ¥(x,y)e AxB
Definition 2.10: (OR)

If (F,A) and (G,B) are two soft sets over a common universe U , then “(F,4) OR (G,B)
» denoted by (F,A)V(G,B) is defined by (F,4)V(G,B)=(H,AxB), where

H(x,y)=F(x)UG(y) ¥(x,y)e AxB
Definition 2.11: AND Soft set

Let (F,-, 4, )ie , be a non-empty family of soft sets over a common universe U . The AND-soft

set A, (E-,A,-) of these soft sets is defined to be the soft set (H ,B ) such that B=114 anq

iel
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H(x)= QF:'(xi) for all x=(x, )., €B.
Definition 2.12: OR Soft set

Let (F,-,A,-) _; be a non-empty family of soft sets over a common universe set U . The OR-

i

soft set V., (E,A,-) of these soft sets is defined to be the soft set (H ,C ) such that C =114, and

iel

H(x):,g,Fi(x,-) forall x=(x,)_, €C.

iel

A

Note: If 4, =A and F,=F Viel then A (F,4) (F,A).

iel

In this case, 114 =114 .

iel iel
Definition 2.13: Fuzzy group
Let G be a group. A fuzzy subset # of G is said to be a fuzzy subgroup of G if

(i) w(xy)=min{p(x), u(y)}
(if) p(x")=px) v x,yeG.
Definition 2.14: Fuzzy level subgroup

Let # be a fuzzy subgroup of a group G . The subgroup i, of G, for t€[0,1] such that

p(e) =t is called a level subgroup of # .

Definition 2.15: Normal fuzzy subgroup

A fuzzy subgroup # of a group G is called normal fuzzy subgroup. If
p(xyx) > u(y) vV x,yeG.
Definition 2.16: Soft group

Let X be a group and (F,A) be a soft set over X . Then (F,A) is said to be a soft group
over X iff F(a)<X VaeX
Definition 2.17: Fuzzy soft group

Let X be a group and ( M, A) be a fuzzy soft set over X . Then ( M, A) is said to be a fuzzy
soft group over X iff foreach a€4 & x,y€ X |

(i) m,(x,y)=min{p,(x), 1, (»)}

(i) 1, ()2 1, ()
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That is, for each a € 4, U, is a fuzzy subgroup in Rosenfield’s sense.

M-N

3 "~ Fuzzy and Normal Fuzzy Subgroups

Definition 3.1: M — N " Fuzzy subgroups

Let G bean M — N —group and # be a fuzzy subgroup of G . If,
L u(mx) = pu(x)
2. p(xn) 2 p(x)
Hold forany xe G, me M & ne N, then # is said to be an M — N —fuzzy subgroup of G .
Definition 3.2:
Let G be an M — N —group. # is said to be an M — N —normal fuzzy subgroup of G if #

is not only an M — N — fuzzy subgroup of G, but also normal fuzzy subgroup of G .

Proposition 3.3:

Let G be an M — N —group. #4,4A both be M — N —fuzzy subgroups of G, then the
intersection of 4,4 is an M — N — fuzzy subgroup of G .
.Corollary 3.4:

The intersection of two M — N —normal fuzzy subgroups t, 4 is an M — N —normal fuzzy
subgroup of G .
Corollary 3.5:

If # is an M — N —fuzzy subgroup of an M —N —group G, then the following statement
hold forall x,y€G, meM and ne N.

1 ,u((m(xy)n) 2 min{,u(x),u(y)}
2. pf(ma)m) 2 (o)

Theorem 3.6:
Let G be an M — N —group, A be a fuzzy set of G. Then A is M — N — fuzzy subgroup of

G iff for any 1 €[0,1], 4, is an M — N —subgroup of G, when 4, # ¢ .
Corollary 3.7:
Let # be a fuzzy set of the M —N —group of G, then # is an M — N —normal fuzzy

subgroup iff 4, is an M — N —normal subgroup of G forany t€[0,1], 1, #¢ .
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Definition 3.8: Let # be an M —N—fuzzy subgroup of an M —N-group G and let
H={xeG,meM,ne N;u(mxn)=u(e)} . Then  isan M — N — fuzzy abelian subgroup of G .

M—-N

4. M-N " Homomorphism and ~ Anti-Homomorphism

Definition 4.1: Let G, and G, both be M — N — groups and ¥ be a homomorphism from G, onto

G,. If y(mx)=my (x) and w(xn)=y(x)n for all x€ G,meM and ne N.Then ¥ is called an
M — N —homomorphism.
Proposition 4.2: Let G, and G, both be M — N — groups and ¥ be a homomorphism from G, onto

G,.If H isan M — N — fuzzy subgroup of G,, then ' () is an M — N —fuzzy subgroup of G,.
Corollary 4.3: Let G, and G, both be M — N —groups and ¥ be a homomorphism from G, onto
G,.If # is an M — N —normal fuzzy subgroup of G,, then v '(u) is an M — N —normal fuzzy
subgroup of G;.
Proposition 4.4: Let G, and G, both be M — N — groups and ¥ be a homomorphism from G, onto
G,.1f # isan M — N —fuzzy subgroup of G, then ¥ (1) is an M — N — fuzzy subgroup of G,.
Corollary 4.5: Let G, and G, both be M — N —groups and ¥ be a homomorphism from G,
onto G,. If M is an M — N —normal fuzzy subgroup of G, then ¥ (1) is an M — N —normal
fuzzy subgroup of G,.
Definition 4.6: Let G, and G, both be M — N — groups, then the function ¥ from G, onto G, is
said to be M — N —anti homomorphism. If ¥ (m(xy))=my (»)y(x) and v ((xy)n)=y () (x)n
forall x€eG,, meM and neN.
Definition 4.7: Let ¥ be an M — N —fuzzy characteristic subgroup of M —N —group G if
1w (m(xy)n) = p(m(xy)n).
Definition 4.8: Soft fuzzy M—N- subgroup (New)

Let G be an M — N — group and (/J,A) be a soft fuzzy subgroup of G . If ,

L g, {m(xy)n} = min{u, (x), 1, (»)}

2. p {mx M} = (%)

Imternational Jeurnal of Research Instinct

{wwweinjriondovancollege.co.in )

86



Gomathi Eswari G.,et.al.,, (September 2017).,Int.J.Res.Ins., Vol 4 (Issue 2).,pp 81-93
Hold for any x,y€G, me M and ne N, then (/J, A) is said to be an M — N —soft fuzzy subgroup

of G.Here u,:A— P(G).

5. M—N —gp Fuzzy and Normal Soft Fuzzy Subgroups

Definition 5.1:
Let G be an M — N — group and (,U, A) be a soft fuzzy subgroup of G . If
1. p,(mx) 2 u,(x)
2. p, ()2 p, (x)
Hold for any xe G, me M & ne N, then (i, 4) is said to be an M — N —soft fuzzy subgroup of
G.

Definition 5.2: Let G be an M — N —group. (4, 4) is said to be an M — N —normal soft fuzzy

subgroup of G if (1, 4) is not only an M — N —soft fuzzy subgroup of G, but also normal soft
fuzzy subgroup of G .

Proposition 5.3: Let G be an M —N—group. (#,4),(A,B) both be M —N—soft fuzzy
subgroups of G, then the intersection of (u,A),(/l,B ) is an M — N —soft fuzzy subgroup of G .

Corollary 5.4: The intersection of to M — N —normal soft fuzzy subgroups (#,A4).(%,B) is an
M — N —normal soft fuzzy subgroup of G .
Corollary 5.5: If (/J,A) is an M — N —soft fuzzy subgroup of an M — N —group G, then the

following statement hold for all x,y€G, meM and ne N .
L, ((m(xy)n) = min{u, (x), 1, (0}
2 s ()20
Theorem 5.6:
Let G be an M — N —group, (4,4) be a soft fuzzy set of G . Then (A,4) is M — N —soft

fuzzy subgroup of G iff for any t€[0,1], (4,4) is an M —N —soft subgroup of G, when
(A,,4)#¢

Corollary 5.7:
Let (1, 4) be a soft fuzzy set of the M — N — group of G, then (4, 4) is an M — N —normal soft
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fuzzy subgroup iff (4,,A4) is an M — N —normal soft subgroup of G for any ¢ €[0,1], (1, 4)#¢ .
Definition 5.8:

Let (,Lt,A) be an M — N —soft fuzzy subgroup of an M —-N-group G and let

H= {xe G,meM,ne N;u,(mxn)= ,ua(e)}_ Then (i, A4) is an M —N —soft fuzzy abelian
subgroup of G .
6. M - N -

M-N M-N

Homomorphism and ~ Anti- Homomorphism of ~ soft fuzzy

subgroups
Proposition 6.1:
Let G, and G, both be M — N —groups and f be a homomorphism from G, onto G,. If
(1, 4) is an M — N — soft fuzzy subgroup of G,, then f~'(u) is an M — N —soft fuzzy subgroup of
G,.
Corollary 6.2:
Let G, and G, both be M — N —groups and / be a homomorphism from G, onto G,. If

(,u,A) is an M — N —normal soft fuzzy subgroup of G,, then f~'(u) is an M — N —normal soft

fuzzy subgroup of G .
Proposition 6.3:

Let G, and G, both be M — N —groups and f be a homomorphism from G, onto G,. If
(1, A4) is an M — N —soft fuzzy subgroup of G,, then f(#) is an M — N — soft fuzzy subgroup of
G,.
Corollary 6.4:

Let G, and G, both be M — N —groups and f be a homomorphism from G, onto G,. If

(1, A4) is an M — N —normal soft fuzzy subgroup of G,, then f(x) is an M — N —normal soft

fuzzy subgroup of G, .
Definition 6.5:
Let G, and G, be M — N — groups. The function / from G, onto G, is said to be M — N —

anti homomorphism, if /' (m(xy))=mf(y)f(x) and f((x»)n)= f(»)f(X)n forall xeG,, meM
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and ne N .
Definition 6.6:

(#,4) be an M —N-—soft fuzzy characteristic subgroup of M —N-group G if

w1, (f (m(xy)n) = u, (m(xy)n).

. M—N M—N ~N

" Homomorphism and ~ Anti homomorphism over ~ Soft Fuzzy

Subgroups
Theorem 7.1:

Let /:G,— G, be an M —N —anti homomorphism. If (1, 4) is an M — N —soft fuzzy
subgroup of G,, then f~'(u) is an M — N — soft fuzzy subgroup of G,.
Proof: Let x,yeG,, meM ,ne N
S ) () = w1, (f(m()) = p, (m(f ()(x))
> min { 1, (m(f (), 1, (f (x))}
> min {mf ™ (11, (), /" (1, (X))}
And
S ) (n) =, (£(Co)n) = 1, (S ) S (n)
> min {1, ((f (), 1, (f (X))}
>min{ /' (1, (), /' (1, (x)m)}
Also [ (s, Omxyn) =, (mf (<) = g, (mf (n) = p, (S (0) =/ (2,(0))
Therefore f~'(u,) is M — N —soft fuzzy subgroup of G,.

Corollary 7.2:
Let f:G,— G, be an M — N —anti homomorphism. If (1,4) is an M — N —normal soft

fuzzy subgroup of G,, then f'(u, A) is an M — N —normal soft fuzzy subgroup of G;.
Proof: Let x,y€G,, meM ,ne N by theorem 7.1 f'(1,) is an M — N — soft fuzzy subgroup of
G [ () ()= 1, (fC) =, (FD) L)) = 1, (S ) = £ () (7)) .

Which is implies that /' (x,) is an M — N —normal soft fuzzy subgroup of G;.
Theorem 7.3:
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An M — N —soft fuzzy characteristic subgroup on M — N —soft fuzzy subgroup is an
M — N —normal soft fuzzy subgroup.
Proof:

Let / be an M — N —anti homomorphism of G which is implies that f(xy) = f(y) f(x).

f(m(xy)) =mf () f(x)
S (()n)=f ) f(x)n
Since #, (m(xy)n) = p, (f(m(xy)n) and
H, (m(Gey)n) = p, (mf (v)f () = p, (f (m(yx)n).
Hence 4, is an M — N —normal soft fuzzy subgroup of G .

Theorem 7.4:
An M — N — anti homomorphism pre image of an M — N —soft fuzzy abelian subgroup is an

M — N —soft fuzzy abelian subgroup.
Proof:

Let (4,4) be an M — N —soft subgroup of G,, we need to prove (A, 4) is an M — N —soft
fuzzy abelian subgroup of G, suppose that (£, 4) is an M — N —soft fuzzy abelian subgroup of G,.
Then H, = {y eG,,meM,neN;u, (myn)= ,ua(ez)} is an M — N —soft fuzzy abelian subgroup of
G,, where e, is the identity of G,. Consider the set H, = {x eG,meM,neN;A, (mxn) = /Ia(el)}
where ¢, is the identity of G,. Let m(xy)n € H, C G|, then A,(mxyn)=2,(e,)
u, (f(mCGy)n)=p, (f(e))
u, (f (m(xy)n) = p,(e,)
H, (m(f ) f(m)=,(e,)
m(f(y)f(x)n)e H, and H, is abelian, thus
i, (m(f (DS D) =, (mC £ () L)) =, (mf (xvIm) =, (mf (3)m)
1, (mC)m) = A, (m(3x)n)
o) = 2, (m(yx)n)
Therefore H, is an M — N —abelian subgroup and (4,4) is an M — N —soft fuzzy abelian

subgroup of G;.
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Theorem 7.5:

An M — N —anti homomorphism image of an M — N —soft fuzzy abelian subgroup is an
M — N —soft fuzzy abelian subgroup.
Proof:

Let (4,4) be an M — N —soft subgroup of G,, we need to prove (4,4) is an M — N —soft

fuzzy abelian subgroup of G, suppose that f is an p7 — y —anti homomorphism from G, into G,
since is an M — N —soft fuzzy abelian subgroup of G,. Then
H = {x eG,meM,neN;2, (mxn) = la(el)} is an M — N —abelian subgroup of G, where ¢ is
the identity of G,. Let M, be an M —N-—soft fuzzy abelian subgroup of G, and
H, = {y eG,,meM,neN;u, (myn)=p, (62)} is an M — N —soft fuzzy abelian subgroup of G, ,
e, is the identity of G, . If m(xy)n € H, < G,, u, (mxyn) = ,(e,)

sup 4@G)=sup 4@
zef’l(m(xy)n) zef M (ey)

A, (mCxy)n) = 2,(e) then
m(xy)n e H, and H, is an M — N —abelian subgroup, thus 2, (m(xy)n) =2, (m(yx)n)

sup 4= sup 42
zef ™ (mC)n) zef ™ (m(y)n)

t, (mGeyyn) = 2, (m(yx)n)
/’ta (62) = /’la (m(yx)n)
Therefore H, is an M — N —abelian subgroup of G, and w4, is an M — N —soft fuzzy abelian

subgroup of G, .
Theorem 7.6:

Let / be an M — N —homomorphism from an M — N —group G, onto an M — N — group
G,. If (A4,4) is an M —N —soft fuzzy subgroup of G, and (A,4) is an f—invariant, then

f(4,4) is an M — N — soft fuzzy subgroup of G, .
Proof:
Let t € Imf(A,), then for some y€G,.
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(S (y)= Sl;pl A (0=t
Where t <4, (e).

We know (la)t is an M — N —soft subgroup of G, ,if t=1 then (f(4,),)=G,.If 0<t<1,

then (/(2,),)=/((2,),), since Z€(/ ())& [(A)2) 21 sup 2,(x) 21

xef(2)

Iff there exist x € G, such that f(x)=2z and A4,(x)>1 iff z€ (f(la );)
Hence (f(la)t)=f((ia )t) and is an M — N —homomorphism, (/(4,)) is an M — N —soft

subgroup of G, therefore (f(4,),) is an M — N —soft subgroup of G, and f(4,) isan M —N -

soft fuzzy subgroup of G, .
Theorem 7.7:

Let f/ be an M — N —anti homomorphism from an M — N —group G, onto an M —N —
group G, . If (A, 4) is an M — N —soft fuzzy subgroup of G, and (4,4) is an f —invariant, then

f(4,) isan M — N — soft fuzzy subgroup of G, .

Proof:
Let t € Imf(4,), then for some Yy €G,.

(F()()=sup 2,(x) =1

Where t<4,(e).
We know (la)t is an M — N —soft subgroup of G, ,if £=1 then (f(4,),)=G,.If 0<t<1,

then (f(j"a)t):f((ﬂ“a)t)a since Ze(f(la)l)Qf(ia)(Z)ZIQ Sfl%llz )la(X)Zt

Iff there exist X € G, such that /(x)=z and 4,(x) =1 iff ze(f(4,)).

Hence (/(4,),)=/(4,), and is an M —N —anti homomorphism, (f(4,)) is an M —N —soft
subgroup of G, therefore (f(4,),) is an M — N —soft subgroup of G, and f(4,) isan M —N —

soft fuzzy subgroup of G, .
Conclusion
In this paper we have discussed M-N- Homomorphism soft fuzzy set group and M-N- Anti

homomorphism soft fuzzy subgroup. Interestingly it has been observed that fuzzy concept adds an
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M-N- fuzzy subgroups from defined fuzzy normal subgroups. The purpose of this paper we
introduce the theory of M-N- soft fuzzy subgroups.
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