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1.INTRODUCTION 

 

 In 1970 Levine[1] introduced and investigated  the concept of generalized closed sets in 

topological spaces . After this work many of the authors investigated various forms of 

stronger and weaker forms of closed sets . In later [2] introduced strongly b* closed sets in 

topological spaces  .K.Balachandran [7] introduced generalized continuous maps in 

topological spaces .Homeomorphism  plays a very important role in topology . By definition , 

a continuous function  between two topological spaces X and Y is , if f -1(V) is closed in X , 

for every closed set V in Y .In 1995 , Maki , Devi and Balachandran [3] introduced the 

concepts of semi-generalized homeomorphisms and generalized semi homeomorphisms and 

studied some semi topological properties . Devi and Balachandran [4]  introduced a 
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generalization of  -homeomorphism in 2001 . In this paper I first introduced a new type of 

continuous function called Sg*-continuous function and a new type of irresolute function 

called Sg*-irresolute function which are stronger than continuous functions and irresolute 

functions and also study their properties 

2. PRELIMINARIES 

Throughout this paper (X, ) represent a topological space on which no separation axioms are 

assumed unless otherwise mentioned . For a subset A of a space X, cl(A) denotes the closure 

of A and int(A) denotes the interior of A respectively . Ac denotes the complement of A in X 

Definition:2.1 A subset (X, ) is said to be  . Ac denotes the complement of A in X  

(1) Semi-pre closed (  -closed)[6] set if int(cl(int(A)))A  

(2)  -closed [12] set , if A=cl (A), where cl (A)={xX : cl(U) A  ,U , xU} 

(3) g-closed[6] set if cl(A)U , whenever AU and U is open in X  

(4)  -closed[12] set if A=cl (A) , where cl  (A)={xX : int(cl(U)) A  ,U , 

xU} 

(5)  -closed[4]  set if cl(int(cl(A)))A 

(6) wg-closed[5] set if cl(int(A)U , whenever AU and U is open in X 

(7) g*-closed[6] set if if cl(A)U , whenever AU and U is g-open in X 

(8) b-closed[9] set if (cl(int(A)) int(cl(A)))A 

(9) b**-closed[2] set if A  (int(cl(int(A))) (cl(int(cl(A)))  

10) g*-closed[6] set if cl(A)U , whenever AU and U is g-open in X  

11) rg-closed[13] set g-closed[6] set if cl(A)U , whenever AU and U is regular open 

in X  

12) Sg*-closed  if cl(int(A)U , whenever AU and U is g-open in X 

The complements of the above mentioned closed sets are their respective open sets  

Definition:2.2A map f:XY is said to be  

(1) Continuous function if f -1(V) is closed in X for every closed set V in Y  

(2) b-continuous function if f -1(V) is b-closed in X for every closed set V in Y 

(3) g-continuous function if f -1(V) is g-closed in X for every closed set V in Y 

(4)  -continuous function if f -1(V) is  -closed in X for every closed set V in Y  

(5) w-continuous function if f -1(V) is w-closed in X for every closed set V in Y 
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(6) g*-continuous function if f -1(V) is g*-closed in X for every closed set V in Y 

(7) Sg*-continuous function if f -1(V) is Sg*-closed in X for every closed set V in Y 

(8) Sg-continuous function if f -1(V) is Sg-closed in X for every closed set V in Y 

(9) gs-continuous function if f -1(V) is gs-closed in X for every closed set V in Y 

Definition:2.3A function f:(X, ) (Y, ) is called  

(1) b-irresolute if  f -1(V) is b-open set in (X, ) for every b-open V in (Y, )   

(2) w-irresolute if f -1(V) is w-open set in (X, ) for every w-open V in (Y, ) 

(3) g- irresoluteif f -1(V) is g-open set in (X, ) for every g-open V in (Y, ) 

(4) g*-irresolute if f -1(V) is g*-open set in (X, ) for every g*-open V in (Y, ) 

(5) Sg*-irresolute if f -1(V) is Sg*-open set in (X, ) for every Sg*-open V in (Y, ) 

3.Sg*- CONTINUOUS FUNCTIONS AND Sg*-IRRESOLUTE FUNCTIONS  

Definition:3.1Let f: (X, ) (Y, ) is said to be Strongly b star (briefly Sb*) continuous 

function  if f -1(V) is Sg*-closed set  in (X, ) for every closed set V in (Y, ) 

Theorem:3.2Every closed map is Sg*-closed map but not conversely 

Proof: Let f:(X, )(Y, ) be a closed map . Then F be a closed set in (X, ) . So f(F) be a 

closed set in (Y, ) . Now by the definition of Sg*-closed, f(F) is a Sg*-closed set in (Y, ). 

We Know that closed Sg*-closed [14] .f is Sg*-closed map . 

 The converse of the above theorem need not be true as seen from the following example 

Example:3.3Let X=Y={a.b.c.d} ,  ={X, ,{b},{b,c},{a,b,d}},  ={Y, ,{a},{b},{a,b}, 

{a,b,c}}. Define a function f:XY as f(a)=a , f(b)=f(c)=d,f(d)=b. Let A={a,b} be a Sb*-

closed . f({a,b})={a,d} which is not closed map 

Remark:3.4Similarly we prove that the below theorems follows from the definition  

(i) Every  -closed map is Sg*-closed map 

(ii) Every  -closed map is Sg*-closed map  

The converse of the above theorems need not be true as seen from the following examples . 

Example:3.5 (i) Let X={a.b.c.d} , 

 ={X, ,{a},{b},{a,b},{a,b,c}}, ={X, ,{b},{b,c},{a,b,d}} Let f:XY be an identity 

map Let A={a,b} be a Sb*-closed . But f({a,b})={a,b} which is not  -closed map 

(ii)Let X=Y={a.b.c.d} ,  ={X, ,{a},{b},{a,b},{a,b,c}}, ={X, ,{b},{b,c},{a,b,d}} Define 

a f:XY as f(a)=f(b)=a and f(c)=f(d)=b. Let A={a,b,c} be a Sg*-closed . But 

f({a,b,c})={a,b} which is not  -closed map. 
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Theorem:3.6 Every Sg*-closed map is g*-closed map 

Proof:Let f:(X, ) (Y, ) be a Sg*-closed map . Then F be a closed set in (X, ) . So f(F) 

be a Sg*-closed set in (Y, ) . Now by the definition of g*-closed, f(F) is a g*-closed set in 

(Y, ). We Know that Sg*-closed g*-closed [2] .f is g*-closed map . 

The converse of the above theorem need not be true as seen from the following example 

Example:3.7Let X=Y={a.b.c.d} ,  ={X, ,{a},{a,c},{a,c,d}},  ={Y, ,{a},{b},{a,b}, 

{a,b,c}}. Let f be an identity map such that f:XY . Let A={c,d} be a g*-closed . 

f({c,d})={c,d} which is not Sb*-closed map 

Remark:3.8Similarly we prove that the below theorems follows from the definition  

(i) Every Sg*-closed map is gs-closed map 

(ii) Every Sg*-closed map is sg-closed map. 

The converse of the above theorems need not be true as seen from the following examples . 

Example:3.9(i) Let X=Y={a.b.c.d} , 

 ={X, ,{a},{b},{a,b},{a,b,c}}, ={X, ,{b},{b,c},{a,b,d}} Let f:XY be an identity 

map . Let A={c} be a gs-closed which is not Sg*-closed map 

(ii)Let X=Y={a.b.c.d} ,  ={X, ,{a},{b},{a,b},{a,b,c}}, ={X, ,{b},{b,c},{a,b,d}}. Let 

f:XY be an identity map Let A={c,d} be a sg-closed which is not Sg*-closed map. 

Theorem:3.10Every continuous function is Sg*-continuous map but not conversely 

Proof: Let f:(X, ) (Y, ) be a continuous function . Then by definition of continuous 

function ,Let V be a closed set in (Y, ) . Then f -1 (V) is closed set in (X, ) .Since,We 

Know that closed Sg*-closed [14] .Then f -1 (V) is Sg*-closed set in (X, ). Therefore f is 

Sg*-continuous function  

Theorem:3.11Every Sg*-continuous function is g*-continuous map but not conversely 

Proof: Let f:(X, ) (Y, ) be a Sg*-continuous function . Then by definition of Sg*-

continuous function , Let V be a closed set in (Y, ) . Then f -1 (V) is Sg*-closed set in (X, ) 

.Since,We Know thatSg* g*-closed [14] .Then f -1 (V) is g*-closed set in (X, ). Therefore 

f is g*-continuous function  

Theorem:3.12Let f:(X, ) (Y, ) be a map . Then the following statements are equivalent  

f is Sg*- continuous  

(a) The inverse image of each open set in Y is Sg*-open in X 
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Proof: Assume that f:(X, ) (Y, ) is Sg*-continuous  Let G be an open set of (Y, ). 

Then Gcis closed in (Y, ) . Since f is Sg*-continuous, f -1 (Gc ) is Sg*-closed in (X, ). But f 

-1 (Gc )=X-f -1 (G) . Thus f -1 (G ) is Sg*-open in (X, ). Conversely, assume that the inverse 

image of each open set in (Y, ) is Sg*-open in (X, ) . Let F be any closed set in (Y, ) . By 

assumption F is Sg*-open in (X, ). But f -1 (Fc )=X-f -1 (F). Thus X-f -1 (F) is Sg*-open in 

(X, ) and so f -1 (F) is Sg*-closed in (X, ). Therefore f is Sg*-continuous . Hence (a) & (b) 

are equivalent . 

Definition:3.13A function f:(X, ) (Y, ) is called Sg*-irresolute function if the inverse 

image of every Sg*-closed in (Y, ) is Sg*-closed in (X, ) 

Theorem:3.14 If a function f:(X, ) (Y, ) is Sg*-irresolute then it is Sg*-continuous  

Proof: Let F be any closed in (Y, ) . Then F is Sg*-closed set in (Y, ) . As f is Sg*-

irresolute , f -1 (F) is Sg*-closed set in (X, ). Therefore f is Sg*-continuous function  

Theorem:3.15 Let f:(X, ) (Y, ) and g: (Y, ) (Z, )be two functions . Then g  f 

:(X, ) (Z, ) is Sg*-continuous if f is Sg*-continuous and g is continuous  

Proof:Let Q be any closed set in (Z, ). Then g -1 (Q) is closed in  (Y, ), Since g is a 

continuous . Sg*-continuiutyof f implies f-1 (g-1(Q)) is Sg*-closed in (X, ). That is (g  f)-1(Q) 

is Sg*-closed in (X, ) . Hence g  f is Sg*-continuous . 

Theorem:3.16 Let f:(X, ) (Y, ) and g: (Y, ) (Z, ) be two functions . Then g  f 

:(X, ) (Z, ) is Sg*-irresolute if f is Sg*-irresolute and g is Sg*-irresolute  

Proof:Let Q be any closed set in (Z, ). Since g is Sg*-irresolute , g -1 (Q) is Sg*-irresolute in  

(Y, ). As f is Sg*-irresolute f-1 (g-1 (Q)) =(g  f)-1(Q) is Sg*-closed in  (X, ) . Hence g  f is 

Sg*-irresolute . 

Theorem:3.17 Let f:(X, ) (Y, ) and g: (Y, ) (Z, ) be two functions . Then g  f 

:(X, ) (Z, ) is Sg*-continuous if f is Sg*-irresolute and g is Sg*-continuous 

Proof:Let Q be any closed set in (Z, ). Since g is Sg*-continuous , g -1 (Q) is Sg*-closed in  

(Y, ). As f is Sg*-irresolute f-1 (g-1 (Q)) =(g  f)-1(Q) is Sg*-closed in  (X, ) . Hence g  f is 

Sg*-continuous . 

Definition :3.18For s subset A of a space Sg*-cl(A) = {F:AF,F is Sg*-closed in X} is 

called the Sg*-closure of A  
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Definition :3.19Let (X, ) be a topological space and  Sg* ={VX:Sg*-cl(X-V)=X-V}  

Theorem:3.20If f:(X, ) (Y, ) is Sg*-continuous and U is open subset of X, then the 

restriction f/U:UY is g*-continuous 

Proof:Let V be any S*-closed in (Y, ). Since f is any Sg*-continuous then f -1(V)  is open in 

(X, ) . Since U is open in (X, ). (f/U)-1 (V)=U f -1 (V) is open in U . Hence f/U is Sg*-

continuous  

Theorem 3.21: Let A be a subset of a topological space X. Then x ∈Sg*cl(A) if and only if 

for any Sg*-open set U containing x, A∩U≠ ϕ.                   

Proof: Let x ∈Sg*cl(A) and suppose that, there is a Sg*-open set U in X such that x ∈ U and 

A∩U≠ ϕ implies that A ⊂Uc which is Sg*-closed in X implies  Sg*cl(A) ⊆Sg*cl(Uc) = Uc. 

since x ∈ U implies that x ∉Uc implies that x ∉Sg*cl(A), this is a contradiction. 

Converserly, Suppose that, for any Sg*-open set U containing x, A∩U≠ ϕ. To prove that x 

∈Sg*cl(A). Suppose that x ∉Sg*cl(A),then there is a Sg*-closed set F in X such that x ∉ F 

and A ⊆ F. Since x ∉ F implies that x ∈ Fc which is Sg*-open in X. Since A ⊆ F implies that 

A ∩ Fc = ϕ, this is a contradiction. Thus x ∈Sg*cl(A). 

Theorem 3.22: Let f: X→Y be a function from a topological space X into a topological 

space Y. If f: X→Y is Sg*-continuous, then f(Sg*cl(A)) ⊆ cl(f(A)) for every subset A of X. 

Proof: Since f(A) ⊆ cl(f(A)) implies that A ⊆ f-1(cl(f(A))). Since cl(f(A)) is a closed set in Y 

and f is Sg*-continuous, then by definition f-1(cl(f(A))) is a Sg*-closed set in X containing A. 

Hence Sg*cl(A) ⊆ f-1(cl(f(A))). Therefore f(Sg*cl(A)) ⊆ cl(f(A)). 

Theorem 3.23: Let f: X→Y be a function from a topological space X into a topological 

space Y. 

Then the following statements are equivalent: 

 (i) For each point x in X and each open set V in Ywith f(x) ∈ V, there is a Sg*-open set U in 

X such that x ∈ U and f(U) ⊆ V. 

(ii) For each subset A of X, f(Sg*cl(A)) ⊆ cl(f(A)). 

(iii) For each subset B of Y, Sg*cl(f-1(B)) ⊆ f-1. 

Proof: (i) → (ii) Suppose that (i) holds and let y ∈f(Sg*cl(A)) and let V be any open 

neighborhood of y. Since y ∈f(Sg*cl(A)) implies that there exists x ∈Sg*cl(A) such that f(x) 

= y. Since f(x) ∈ V, then by (i) there exists a Sg*-open set U in X such that x ∈U and f(U) ⊆ 

V. Since x ∈f(Sg*cl(A)), then by theorem 3.25U∩A≠ϕ. Therefore we have y = f(x) 
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∈cl(f((A)). Hence f(Sg*cl(A)) ⊆ cl(f(A)). 

(ii) → (i) Let if (ii) holds and let x ∈ X and V be any pen set in Y containing f(x). Let A = f-

1(Vc) this implies that x ∉ A. Since f(Sg*cl(A)) ⊆ cl(f(A)) ⊆Vc this implies that Sg*cl(A) ⊆ 

f-1(V) = A. Since x ∉ A implies that x ∉Sg*cl(A) and by theorem 3.25 there exists a Sg*-

open set U containing x such that U∩A≠ ϕ and hence f(U) ⊆ f(Ac) ⊆ V. 

(ii) → (iii) Suppose that (ii) holds and Let B be any subset of Y. Replacing A by f-1(B) we get 

from (ii) f(Sg*cl(f-1(B))) ⊆ cl(f(f-1(B))) ⊆ cl(B). Hence Sg*cl(f-1(B)) ⊆ f-1(cl(B)). 

(iii) → (ii) Suppose that (iii) holds, let B = f(A) where A is a subset of X. Then we get from 

(iii) Sg*cl(A) ⊆Sg*cl(f-1(f(A)) ⊆ f-1(cl(f(A))). Therefore f(Sg*cl(A)) ⊆ cl(f(A)). 

Theorem 3.24: If a function f: X→Y is Sg*-continuous, then f(Sg*-cl(A)) ⊆ cl(f(A)) for 

every subset A of X. 

Proof: Let f: X→Y be Sg*-continuous. Let A⊆X. Then cl(f(A)) is closed inY. Since f is Sg*-

continuous, f-1(cl(f(A))) is Sg*-closed in X and A⊆f-1(f(A)) ⊆ f-1(cl(f(A))),implies Sg*-cl(A) 

⊆ f-1 (cl(f(A))). Hence f(Sg*-cl(A)) ⊆ cl(f(A)). 

Theorem 3.25: Let f: X→Y be a function. Let (X,τ) and (Y,σ) be any two spaces such that 

 Sg* is a topology on X. Then the following statements are equivalent: 

(i) For every subset A of X, f(Sg*-cl(A)) ⊆ cl(f(A))holds, 

(ii) f: (X, τgr*)→(Y,σ) is continuous. 

Proof: Suppose (i) holds. Let A be closed in Y. By hypothesis f(Sg*-cl(f-1(A))) ⊆ cl(f(f-

1(A))) ⊆cl(f(A)) = A. i.e., Sg*-cl(f-1(A)) ⊆ f-1(A). Also f-1(A) ⊆Sg*-cl(f-1(A)). Hence, Sg*- 

cl(f-1(A)) = f-1(A). This implies (f-1(A))c∈ Sg*  Thus f-1(A) is closed in (X,  Sg*) and so f is 

continuous. This proves (ii). 

 Suppose (ii) holds. For every subset A of X, cl(f(A)) is closed in Y.Since f:(X, Sg*)→(Y,σ) 

is continuous, f-1(cl(A))) is closed in (X, Sg*) that implies by Definition 3.23 ,Sg*-cl(f-

1(cl(f(A)))) = f-1(cl(f(A))). Now we have, A ⊆ f-1(f(A)) ⊆ f-1(cl(f(A))) .  Sg*-cl(A) ⊆Sg*-cl(f-

1(cl(f(A))) = f-1(cl(f(A)). Therefore f(Sg*-cl(A)) ⊆ cl(f(A)). 

Theorem 3.26: Let f: X→Y is Sg*-continuous function and g:Y→Z is continuous function 

then g∘f: X→Z is Sg*-continuous. Proof: Let g be a continuous function and V be any open 

set in Z then f-1(V) is open in Y. Since f is Sg*-continuous, f-1(g-1(V)) = (g∘f)-1(V) is Sg*-

open in X. Hence g∘f is Sg*-continuous. 

Theorem 3.27: Let f: X→Y and g: Y→Z be any two functions. Let h = g∘f. Then:  
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(i) h is Sg*-continuous if f is Sg*-irresolute and g is Sg*-continuous and  

(ii) h is Sg*-continuous if g is continuous and f is Sg*-continuous.  

Proof: Let V be closed in Z. (i) Suppose f is Sg*-irresolute and g is Sg*-continuous. Since g 

continuous is Sg*-continuous. g-1(V) is Sg*-closed in Y. Since f is gr*-irresolute, using the 

Definition f-1(g-1(V)) is Sg*-closed in X. This proves (i).  

(ii) Let g be continuous and f be Sg*-continuous. Then g-1(V) is closed in Y. Since f is Sg*-

continuous, using the Definition f-1(g-1(V)) is Sg*-closed in X. This proves (iii). 

Theorem 3.28: A function f: X→Y be a bijection. Then the following are equivalent:  

(i) f is Sg*-open,  

(ii) f is Sg*-closed,  

(iii) f-1 is Sg*-irresolute.  

Proof: Suppose f is Sg*-open. Let F be Sg*-closed in X. Then X\F is gr*-open. By 

Definition  f(X\F) is gr*-open. Since f is bijection, Y\f(F) is gr*-open in Y. Therefore f is 

Sg*-closed. This proves (i) ⇒(ii).  

Let g = f-1. Suppose f is Sg*-closed. Let V be Sg*-open in X. Then X\V is Sg*-closed in X. 

Since f is Sg*-closed, f(X\V) is Sg *-closed. Since f is a bijection, Y\f(V) is Sg*-closed that 

implies f(V) is Sg*-open in Y. since g and f are bijection g-1(V) = f(V) so that g-1(V) is Sg *-

open in Y. Therefore f-1 is Sg *-irresolute. This proves (ii) ⇒(iii).  

Suppose f-1 is Sg*-irresolute. Let V be Sg*-open in X. Then X\V is Sg *-closed in X. Since f-

1 is Sg *-irresolute and (f-1 )-1(X\V) = f(X\V) = Y\f(V) is Sg *-closed in Y that implies f(V) is 

Sg*-open in Y. Therefore f is Sg *-open. This proves (iii) ⇒(i).  

Theorem 3.29Let f: X→Y and g: Y→Z are gr*-irresolute, then g∘f: X→Z is Sg *-irresolute.  

Proof: Let g be an Sg *-irresolute function and V be any Sg *-open in Z, then f-1(V) is Sg *-

open set in Y, since f is gr*-irresolute, f-1(g-1(U)) = (g∘f)-1(U) is Sg *-open in (X,τ). Hence 

g∘f is Sg *-irresolute. 
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